
Eliminating State Entanglement with
Checkpoint-based Virtualization of Mobile OS Services

Kevin Boos & Lin Zhong

What is State Entanglement?
Application-relevant states are stored
outside of the application’s process memory

Shared

Library

Model

vs.

Mobile

OS Service

Model

Motivation – Why do we care?
State entanglement prevents the following:
 Fault isolation
 Fault tolerance
 Application migration
 Live update (of both apps and services)
 Whole-application speculation

Solution: OS Service Virtualization
 Virtualize OS Service on a per-app basis
 Encapsulates only one app’s states in

each service instance
• Disentangles states

CORSA: Checkpoint-based Virtualization
 Virtualizes OS Services via checkpoint/restore
 Intercepts app-service transactions
 Maintains a per-app checkpoint history
 Only one service instance is active at a time

• All other OS bodies see one service instance
• Satisfies legacy expectations and constraints

An OS Service cannot be
instantiated multiple times!

Each service must be a singleton instance to
ensure compatibility with the global service
directory and other legacy OS components.

Ongoing Implementation
 Kernel-based C/R mechanism

• Checkpoint: duplicates process
structures, uses COW for speed

• Restore: swaps process control block
pointers to previous checkpoint

• Triggered on Binder IPC transactions

Before any
app uses a
particular
OS Service,
CORSA saves
that service’s
state as Base
Checkpoint.

When App A
first wants
to use the
service, it
proceeds
as normal.

When App B first wants to use the
service, CORSA saves the state of
the service correlated with the
previous app (App A) and restores
the Base Checkpoint so App B can
start with a clean slate, as if it was
the only app using the service.

App B can
now proceed
to use the
service, fully
disentangled
from App A.

When App A
wants to use
the service
again, CORSA

checkpoints
the service
state for App B
and restores
App A’s latest
checkpoint.

Rice University ECE
Houston, Texas

Checkpoint and Restore can be parallelized
 Slow checkpoint, fast restore operation
 Only restore is on the critical path

www.owlnet.rice.edu/~kevinaboos

Feasibility Measurement Study

 Checkpoint latency tC = 0.3 ms
 Restore latency tR = 4.4 µs
 Min. transaction interval: θ = 1.07 ms
 Max transaction frequency: f = 221 Hz

CORSA Android Implementation is Feasible!
 Checkpoint latency (tC) < θ
 Restore latency (tR) << θ
 No perceivable effect on user experience

